Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
2.
Small ; : e2402726, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651509

RESUMEN

Heterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO2 is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance. Theoretical calculations suggest that the presence of ceria reduces the free energy barrier for the conversion of nitrides into metals. Supporting this, the experimental findings reveal that the incorporation of rare earth oxides enables the controlled phase transition from nitride into metal, with the proportion adjustable by varying the amount of added rare earth. Thanks to the role of CeO2 decoration in promoting the reaction kinetics and fostering the formation of the genuine active phase, the optimized Ni3FeN/Ni3Fe/CeO2-5% nanoparticles heterostructure catalyst exhibits outstanding OER activity, achieving an overpotential of just 249 mV at 10 mA cm-2. This approach offers fresh perspectives for the conception of highly efficient heterogeneous OER catalysts, contributing a strategic avenue for advanced catalytic design in the field of energy conversion.

3.
Small ; : e2311505, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433398

RESUMEN

The rational design of heterogeneous catalysts is crucial for achieving optimal physicochemical properties and high electrochemical activity. However, the development of new amorphous-crystalline heterostructures is significantly more challenging than that of the existing crystalline-crystalline heterostructures. To overcome these issues, a coordination-assisted strategy that can help fabricate an amorphous NiO/crystalline NiCeOx (a-NiO/c-NiCeOx ) heterostructure is reported herein. The coordination geometry of the organic ligands plays a pivotal role in permitting the formation of coordination polymers with high Ni contents. This consequently provides an opportunity for enabling the supersaturation of Ni in the NiCeOx structure during annealing, leading to the endogenous spillover of Ni from the depths of NiCeOx to its surface. The resulting heterostructure, featuring strongly coupled amorphous NiO and crystalline NiCeOx , exhibits harmonious interactions in addition to low overpotentials and high catalytic stability in the oxygen evolution reaction (OER). Theoretical calculations prove that the amorphous-crystalline interfaces facilitate charge transfer, which plays a critical role in regulating the local electron density of the Ni sites, thereby promoting the adsorption of oxygen-based intermediates on the Ni sites and lowering the dissociation-related energy barriers. Overall, this study underscores the potential of coordinating different metal ions at the molecular level to advance amorphous-crystalline heterostructure design.

5.
PLoS Pathog ; 20(3): e1012063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466776

RESUMEN

BACKGROUND: Epigenome-wide association studies (EWAS) have identified CpG sites associated with HIV infection in blood cells in bulk, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. In this study, we aim to identify differentially methylated CpG sites for HIV infection in immune cell types: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes. METHODS: Applying a computational deconvolution method, we performed a cell-type based EWAS for HIV infection in three independent cohorts (Ntotal = 1,382). DNA methylation in blood or in peripheral blood mononuclear cells (PBMCs) was profiled by an array-based method and then deconvoluted by Tensor Composition Analysis (TCA). The TCA-computed CpG methylation in each cell type was first benchmarked by bisulfite DNA methylation capture sequencing in a subset of the samples. Cell-type EWAS of HIV infection was performed in each cohort separately and a meta-EWAS was conducted followed by gene set enrichment analysis. RESULTS: The meta-analysis unveiled a total of 2,021 cell-type unique significant CpG sites for five inferred cell types. Among these inferred cell-type unique CpG sites, the concordance rate in the three cohorts ranged from 96% to 100% in each cell type. Cell-type level meta-EWAS unveiled distinct patterns of HIV-associated differential CpG methylation, where 74% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of unique HIV-associated CpG sites (N = 1,624) compared to any other cell type. Genes harboring significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CD4+ T-cells: NLRC5, CX3CR1, B cells: IFI44L, NK cells: IL12R, monocytes: IRF7), and in oncogenesis (e.g. CD4+ T-cells: BCL family, PRDM16, monocytes: PRDM16, PDCD1LG2). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis that were enriched among interferon-α and -γ, TNF-α, inflammatory response, and apoptotic pathways. CONCLUSION: Our findings uncovered computationally inferred cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding HIV pathogenesis.


Asunto(s)
Metilación de ADN , Infecciones por VIH , Humanos , Epigenoma , Epigénesis Genética , Leucocitos Mononucleares , Infecciones por VIH/genética , Islas de CpG , Carcinogénesis/genética , Estudio de Asociación del Genoma Completo/métodos , Péptidos y Proteínas de Señalización Intracelular/genética
6.
Angew Chem Int Ed Engl ; 63(20): e202402171, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38494450

RESUMEN

Design the electrocatalysts without noble metal is still a challenge for oxygen evolution reaction (OER) in acid media. Herein, we reported the manganese (Mn) doping method to decrease the concentration of oxygen vacancy (VO) and form the Mn-O structure adjacent octahedral sites in spinel NiCo2O4-δ (NiMn1.5Co3O4-δ), which highly enhanced the activity and stability of spinel NiCo2O4-δ with a low overpotential (η) of 280 mV at j=10 mA cm-2 and long-term stability of 80 h in acid media. The isotopic labelling experiment based on differential electrochemical mass spectrometry (DEMS) clearly demonstrated the lattice oxygen in NiMn1.5Co3O4-δ is more stable due to strong Mn-O bond and shows synergetic adsorbate evolution mechanism (SAEM) for acid OER. Density functional theory (DFT) calculations reveal highly increased oxygen vacancy formation energy (EVO) of NiCo2O4-δ after Mn doping. More importantly, the highly hydrogen bonding between Mn-O and *OOH adsorbed on adjacent Co octahedral sites promote the formation of *OO from *OOH due to the greatly enhanced charge density of O in Mn substituted sites.

7.
NPJ Precis Oncol ; 8(1): 68, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480868

RESUMEN

We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.

8.
J Am Chem Soc ; 146(8): 5324-5332, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38355103

RESUMEN

The low coverage rate of anode OH adsorption under high current density conditions has become an important factor restricting the development of an industrial alkaline water electrolyzer (AWE). Here, we present our rare earth modification promotion strategy on using the rare earth oxygen-friendly interface to increase the OH coverage of the NiS2 surface for efficient AWE anode catalysis. Density functional theory calculations predict that rare earths can enhance the coverage of surface OH, and the synthesis reaction mechanism is discussed in the synthesis process spectrum. Experimentally, by preparing a series of rare-earth-modified NiS2, the relationship between OH coverage, active site density, and catalytic activity was established by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, time-resolved absorption spectra, and so on. The unique oxygenophilic properties of rare earths enhance OH coverage, thereby increasing the density of active sites for efficient catalysis. Furthermore, Eu2O3/NiS2 was assembled into the AWE equipment and operated stably for over 240 h at a current density of 300 mA cm-2 under industrial conditions of 80 °C and 30% KOH. Rare-earth-modified NiS2 exhibits better catalytic activity than traditional non-noble metal anode catalysts Ni(OH)2 and NiS2, providing a new approach for rare earth promotion to solve the problem of low OH coverage in the AWE anode.

9.
ACS Appl Mater Interfaces ; 16(10): 12289-12301, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38418381

RESUMEN

The intricate tumor microenvironment (TME) always brings about unsatisfactory therapeutic effects for treatments, although nanomedicines have been demonstrated to be highly beneficial for synergistic therapies to avoid the side effects caused by the complexity and heterogeneity of cancer. Developing nanotheranostics with the functionalities of both synergistic therapies and TME regulation is a good strategy but is still in its infancy. Herein, an "all-in-one" nanoplatform for integrated diagnosis and treatment, namely, Carrier@ICG@DOX@FA (CIDF), is constructed. Benefiting from the bimetallic coordination of Eu3+-HTHA (4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione) and Fe3+ with the ligands in UiO-67, CIDF can simultaneously achieve two-photon fluorescence imaging, fluorescent lifetime imaging in deep tumors, and regulation of TME. Owing to its porosity, CIDF can encapsulate indocyanine green as photosensitizers and doxorubicin as chemotherapeutic agent, further realizing light-controlled drug release. Moreover, CIDF exhibited good biocompatibility and tumor targeting by coating with folic-acid-modified polymers. Both in vitro and in vivo experiments demonstrate the excellent therapeutic efficacy of CIDF through dual-modal-imaging-guided synergistic photothermal-, photodynamic-, and chemotherapy. CIDF provides a new paradigm for the construction of TME-regulated synergistic nanotheranostics and realizes the complete elimination of tumors without recurrence.


Asunto(s)
Nanopartículas , Fototerapia , Fototerapia/métodos , Línea Celular Tumoral , Microambiente Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Verde de Indocianina , Imagen Óptica
10.
Chem Soc Rev ; 53(4): 2211-2247, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240305

RESUMEN

Recently, high-entropy (HE) materials have attracted increasing interest in various fields due to their unique characteristics. Rare earth (RE) elements have a similar atomic radius and gradually occupied 4f orbitals, endowing them with abundant optical, electric, and magnetic properties. Furthermore, HE-RE materials exhibit good structural and thermal stability and various functional properties, emerging as an important class of HE materials, which are on the verge of rapid development. However, a comprehensive review focusing on the introduction and in-depth understanding of HE-RE materials has not been reported to date. Thus, this review endeavors to provide a comprehensive summary of the development and research status of HE-RE materials, including alloys and ceramics, ranging from their structure, synthesis, and properties to applications. In addition, some distinctive issues of HR-RE materials related to the special electronic structure of RE are also discussed. Finally, we put forward the current challenges and future development directions of HE-RE materials. We hope that this review will provide inspiration for new design ideas and valuable references in this emerging field in the future.

11.
Angew Chem Int Ed Engl ; 63(9): e202313185, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38059914

RESUMEN

Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide-based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO4 2- , PO3 2- , SeO4 2- , etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl-type oxide NiO to form a tetraoxo-tetrahedral coordination structure (S-O4 ) inside the NiO (S-NiO -I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S-O4 and Ni-S stable structure in S-NiO-I. Combining mass spectroscopy characterization, it could be confirmed that the S-O4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.

12.
Small ; 20(4): e2305251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37718454

RESUMEN

Alternating current electroluminescence (ACEL) devices are attractive candidates in cost-effective lighting, sensing, and flexible displays due to their uniform luminescence, stable performance, and outstanding deformability. However, ACEL devices have suffered from limited options for the light-emitting layer, which presents a significant constraint in the progress of utilizing ACEL. Herein, a new class of ACEL phosphors based on lanthanide metal-organic frameworks (Ln-MOFs) is devised. A synthesis of lanthanide-benzenetricarboxylate (Ln-BTC) thin film on a brass grid substrate seeded with ZnO nanowires (NWs) as anchors is developed. The as-synthesized Ln-BTC thin film is employed as the emissive layer and shows visible electroluminescence driven by alternating current (2.9 V µm-1 , 1 kHz) for the first time. Mechanistic investigations reveal that the Ln-based ACEL stems from impact excitation by accelerated electrons from ZnO NWs. Fine-tuning of the ACEL color is also demonstrated by controlling the Ln-MOF compositions and introducing an extra ZnS emitting layer. The advances in these optical materials expand the application of ACEL devices in anti-counterfeiting.

13.
Adv Mater ; 36(13): e2311102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100677

RESUMEN

The electronic structure and geometric configuration of catalysts play a crucial role to design novel perovskite-type catalysts for oxygen reduction reaction (ORR). Nowadays, many studies are more concerned with the influence of electronic structure and ignore the geometric effect, which plays a nonnegligible role in enhancing catalytic performances. Herein, this work regulates the MnO6 octahedral tilting degree of LaMnO3 by modulating the concentration of Y3+, excluding the electronic effect from the valence state of manganese. Plotting the MnO6 octahedral tilting degree as a function of concentration of Y3+ produces a volcano-shaped plot. The octahedral tilting can reduce the Mn-O covalency, generating more highly active Mn3+ and oxygen vacancies during ORR process. The specific activity has a positive correlation with octahedral tilting degree. Meanwhile, the octahedral tilting stabilizes Mn-O interactions during ORR process and promote stability. Based on experimental results and DFT calculations, octahedral tilting alters the rate-determining step (RDS) and decrease the energy barrier. Subsequent extended experiment confirms that octahedral tilting is the key factor to affect the catalytic performances.

14.
Proc Natl Acad Sci U S A ; 120(50): e2312224120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051768

RESUMEN

To master the activation law and mechanism of surface lattice oxygen for the oxygen evolution reaction (OER) is critical for the development of efficient water electrolysis. Herein, we propose a strategy for triggering lattice-oxygen oxidation and enabling non-concerted proton-electron transfers during OER conditions by substituting Al in La0.3Sr0.7CoO3-δ. According to our experimental data and density functional theory calculations, the substitution of Al can have a dual effect of promoting surface reconstruction into active Co oxyhydroxides and activating deprotonation on the reconstructed oxyhydroxide, inducing negatively charged oxygen as an active site. This leads to a significant improvement in the OER activity. Additionally, Al dopants facilitate the preoxidation of active cobalt metal, which introduces great structural flexibility due to elevated O 2p levels. As OER progresses, the accumulation of oxygen vacancies and lattice-oxygen oxidation on the catalyst surface leads to the termination of Al3+ leaching, thereby preventing further reconstruction. We have demonstrated a promising approach to achieving tunable electrochemical reconstruction by optimizing the electronic structure and gained a fundamental understanding of the activation mechanism of surface oxygen sites.

15.
Cell Rep ; 42(11): 113454, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37976160

RESUMEN

Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.


Asunto(s)
Factor de Transcripción GATA1 , Factores de Transcripción , Ratones , Humanos , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Regiones Promotoras Genéticas/genética , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo
16.
Angew Chem Int Ed Engl ; 62(47): e202313165, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37828621

RESUMEN

Superlattices have considerable potential as sonosensitizers for cancer therapy because of their flexible and tunable band gaps, although they have not yet been reported. In this study, a Ti-based organic-inorganic superlattice with good electron-hole separation was synthesized, which consisted of orderly layered superlattices of 2,2'-bipyridine-5,5'-dicarboxylic acid (BPDC) and Ti-O layers. In addition, the superlattice was coordinated with Fe(III) and encapsulated doxorubicin (DOX) to prepare Ti-BPDC@Fe@DOX@PEG (TFDP) after biocompatibility modification. TFDP can realize the simultaneous generation of reactive oxygen species and release of DOX under ultrasound irradiation. Moreover, adjusting the Fe(III) content can effectively modulate the band gap of the superlattice and increase the efficiency of sonodynamic therapy (SDT). The mechanisms underlying this modulation were explored. TFDP with Fe(III) can also be used as a contrast agent for magnetic resonance imaging (MRI). Both in vitro and in vivo experiments demonstrated the ability of TFDP to precisely treat cancer using MRI-guided SDT/chemotherapy. This study expands the applications of superlattices as sonosensitizers with flexible and tailored modifications and indicates that superlattices are promising for precise and customized treatments.


Asunto(s)
Neoplasias , Terapia por Ultrasonido , Humanos , Compuestos Férricos , Titanio , Terapia por Ultrasonido/métodos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/terapia , Especies Reactivas de Oxígeno , Imagen por Resonancia Magnética , Línea Celular Tumoral
17.
Sci Adv ; 9(36): eadh2140, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683007

RESUMEN

Blue perovskite light-emitting diodes (LEDs) have shown external quantum efficiencies (EQEs) of more than 10%; however, devices that emit in the true blue-those that accord with the emission wavelength required for Rec. 2100 primary blue-have so far been limited to EQEs of ~6%. We focused here on true blue emitting CsPbBr3 colloidal nanocrystals (c-NCs), finding in early studies that they suffer from a high charge injection barrier, a problem exacerbated in films containing multiple layers of nanocrystals. We introduce a self-assembled monolayer (SAM) active layer that improves charge injection. We identified a bifunctional capping ligand that simultaneously enables the self-assembly of CsPbBr3 c-NCs while passivating surface traps. We report, as a result, SAM-based LEDs exhibit a champion EQE of ~12% [CIE of (0.132, 0.069) at 4.0 V with a luminance of 11 cd/m2], and 10-fold-enhanced operating stability relative to the best previously reported Rec. 2100-blue perovskite LEDs.

18.
Front Oncol ; 13: 1127645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637066

RESUMEN

Background: Glioblastomas (GBM) are rapidly progressive, nearly uniformly fatal brain tumors. Proteomic analysis represents an opportunity for noninvasive GBM classification and biological understanding of treatment response. Purpose: We analyzed differential proteomic expression pre vs. post completion of concurrent chemoirradiation (CRT) in patient serum samples to explore proteomic alterations and classify GBM by integrating clinical and proteomic parameters. Materials and methods: 82 patients with GBM were clinically annotated and serum samples obtained pre- and post-CRT. Serum samples were then screened using the aptamer-based SOMAScan® proteomic assay. Significant traits from uni- and multivariate Cox models for overall survival (OS) were designated independent prognostic factors and principal component analysis (PCA) was carried out. Differential expression of protein signals was calculated using paired t-tests, with KOBAS used to identify associated KEGG pathways. GSEA pre-ranked analysis was employed on the overall list of differentially expressed proteins (DEPs) against the MSigDB Hallmark, GO Biological Process, and Reactome databases with weighted gene correlation network analysis (WGCNA) and Enrichr used to validate pathway hits internally. Results: 3 clinical clusters of patients with differential survival were identified. 389 significantly DEPs pre vs. post-treatment were identified, including 284 upregulated and 105 downregulated, representing several pathways relevant to cancer metabolism and progression. The lowest survival group (median OS 13.2 months) was associated with DEPs affiliated with proliferative pathways and exhibiting distinct oppositional response including with respect to radiation therapy related pathways, as compared to better-performing groups (intermediate, median OS 22.4 months; highest, median OS 28.7 months). Opposite signaling patterns across multiple analyses in several pathways (notably fatty acid metabolism, NOTCH, TNFα via NF-κB, Myc target V1 signaling, UV response, unfolded protein response, peroxisome, and interferon response) were distinct between clinical survival groups and supported by WGCNA. 23 proteins were statistically signficant for OS with 5 (NETO2, CST7, SEMA6D, CBLN4, NPS) supported by KM. Conclusion: Distinct proteomic alterations with hallmarks of cancer, including progression, resistance, stemness, and invasion, were identified in serum samples obtained from GBM patients pre vs. post CRT and corresponded with clinical survival. The proteome can potentially be employed for glioma classification and biological interrogation of cancer pathways.

19.
Immunity ; 56(7): 1561-1577.e9, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37402364

RESUMEN

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiología , Celulitis (Flemón)/metabolismo , Macrófagos/metabolismo , Matriz Extracelular
20.
Small ; 19(40): e2303099, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269214

RESUMEN

Copper-based electrocatalysts effectively produce multicarbon (C2+ ) compounds during the electrochemical CO2 reduction (CO2 RR). However, big challenges still remain because of the chemically unstable active sites. Here, cerium is used as a self-sacrificing agent to stabilize the Cu+ of CuS, due to the facile Ce3+ /Ce4+ redox. CeO2 -modified CuS nanoplates achieve high ethanol selectivity, with FE up to 54% and FEC2+ ≈ 75% in a flow cell. Moreover, in situ Raman spectroscopy and in situ Fourier-transform infrared spectroscopy indicate that the stable Cu+ species promote CC coupling step under CO2 RR. Density functional theory calculations further reveal that the stronger * CO adsorption and lower CC coupling energy, which is conducive to the selective generation of ethanol products. This work provides a facile strategy to convert CO2 into ethanol by retaining Cu+ species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...